Dynamic Programming?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solving complex problems by breaking them down into simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub-problems which are only slightly smaller and optimal substructure. Ok, here is the problem. Given an array with N integers, find a continuous subsequence whose sum’s absolute value is the smallest. Very typical DP problem, right?
Input
The first line contains a single integer T, indicating the number of test cases. Each test case includes an integer N. Then a line with N integers Ai follows. Technical Specification 1. 1 <= T <= 100 2. 1 <= N <= 1 000 3. -100 000 <= Ai <= 100 000
Output
For each test case, output the case number first, then the smallest absolute value of sum.
Sample Input
2 2 1 -1 4 1 2 1 -2
Sample Output
Case 1: 0 Case 2: 1
Author
iSea@WHU
Source
思路:暴力,我以为会T,还想用treap优化一下。。。
#includeusing namespace std;#define ll long long#define pi (4*atan(1.0))#define eps 1e-14const int N=2e5+10,M=4e6+10,inf=1e9+10,mod=1e9+7;const ll INF=1e18+10;int a[N];int pre[N];int main(){ int T,cas=1; scanf("%d",&T); while(T--) { int n; scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) pre[i]=pre[i-1]+a[i]; int ans=inf; for(int i=1;i<=n;i++) for(int t=i;t<=n;t++) { ans=min(ans,abs(pre[t]-pre[i-1])); } printf("Case %d: %d\n",cas++,ans); } return 0;}